Tomato tos1 mutation identifies a gene essential for osmotic tolerance and abscisic acid sensitivity.

نویسندگان

  • Omar Borsani
  • Jesús Cuartero
  • Victoriano Valpuesta
  • Miguel A Botella
چکیده

Osmotic stress severely limits plant growth and agricultural productivity. We have used mutagenesis to identify plant genes that are required for osmotic stress tolerance in tomato. As a result, we have isolated a novel mutant in tomato (tos1) caused by a single recessive nuclear mutation that is hypersensitive to general osmotic stress. Growth measurements demonstrated that the tos1 mutant is less sensitive to intracellular abscisic acid (ABA) and this decreased ABA sensitivity of tos1 is a basic cellular trait expressed by the mutant at all developmental stages analysed. It is not caused by a deficiency in the synthesis of ABA because the tos1 seedlings accumulated more ABA than the wild type (WT) after osmotic stress. In contrast, the tss2 tomato mutant, which is also hypersensitive to osmotic stress, is hypersensitive to exogenous ABA. Comparative analysis of tos1 and tss2 indicates that appropriate ABA perception and signalling is essential for osmotic tolerance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ABA- and ethylene-mediated responses in osmotically stressed tomato are regulated by the TSS2 and TOS1 loci.

The study of mutants impaired in the sensitivity or synthesis of abscisic acid (ABA) has become a powerful tool to analyse the interactions occurring between the ABA and ethylene signalling pathways, with potential to change the traditional view of the role of ABA as just being involved in growth inhibition. The tss2 tomato mutant, which is hypersensitive to NaCl and osmotic stress, shows enhan...

متن کامل

Identification of two loci in tomato reveals distinct mechanisms for salt tolerance.

Salt stress is one of the most serious environmental factors limiting the productivity of crop plants. To understand the molecular basis for salt responses, we used mutagenesis to identify plant genes required for salt tolerance in tomato. As a result, three tomato salt-hypersensitive (tss) mutants were isolated. These mutants defined two loci and were caused by single recessive nuclear mutatio...

متن کامل

Comparative effects of abscisic acid and two Sulfonamide compounds on tomato under drought conditions . Leila Zeinali Yadegari*, Reza Heidari, Jalil Khara

The effects of exogenous abscisic acid (ABA) and its two agonists, Sulfacetamide (Sa) and Sulfasalazine (SS) on tolerance of tomato (Lycopersicon esculentum Mill. Cv. Super chief) under drought stress were studied. Eight-week plants were treated with ABA (25 and 50 mg/L), Sulfacetamide (Sa) (25, 50 and 100 mg/L) and Sulfasalazine (SS) (25, 50 and 100 mg/L). Solutions were sprayed daily and samp...

متن کامل

Water relations of the tos1 tomato mutant at contrasting evaporative demand.

The tos1 (tomato osmotically sensitive) mutant, isolated from an in vitro screen of root growth during osmotic stress, was less sensitive to exogenous ABA, but accumulated more ABA under osmotic stress than WT plants. We assessed growth and water relations characteristics of hydroponically grown tos1 seedlings (in the absence of osmotic stress) at low and high evaporative demands. Growth of tos...

متن کامل

Wild-type levels of abscisic Acid are not required for heat shock protein accumulation in tomato.

Levels of endogenous abscisic acid (ABA) in wild type were not required for the synthesis of heat shock proteins in detached leaves of tomato (Lycopersicon esculentum Mill., cv Ailsa Craig). Heat-induced alterations in gene expression were the same in the ABA-deficient mutant of tomato, flacca, and the wild type. Heat tolerance of the mutant was marginally less that the wild type, and in contra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Plant journal : for cell and molecular biology

دوره 32 6  شماره 

صفحات  -

تاریخ انتشار 2002